
Notice: This document contains references to Agilent.
Please note that Agilent’s Test and Measurement
business has become Keysight Technologies. For more
information, go to www.keysight.com.

Programmer's
Guide

Keysight M9420A
VXT Vector Transceiver

Notices

Copyright Notice
©Keysight Technologies 2015

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a foreign
language) without prior agreement and
written consent from Keysight
Technologies, Inc. as governed by
United States and international
copyright laws.

Manual Part Number
M9420-90031

Published By
Keysight Technologies
No 116 Tianfu 4th Street
Hi-Tech Industrial Zone (South)
Chengdu, China

Edition
Edition 1, September 2015

Regulatory Compliance
This product has been designed and
tested in accordance with accepted
industry standards, and has been
supplied in a safe condition. To review
the Declaration of Conformity, go to
http://www.keysight.com/go/conformity.

Warranty
THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,” AND
IS SUBJECT TO BEING CHANGED,
WITHOUT NOTICE, IN FUTURE
EDITIONS. FURTHER, TO THE
MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, KEYSIGHT
DISCLAIMS ALL WARRANTIES, EITHER
EXPRESS OR IMPLIED, WITH REGARD
TO THIS MANUAL AND ANY
INFORMATION CONTAINED HEREIN,
INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. KEYSIGHT
SHALL NOT BE LIABLE FOR ERRORS
OR FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE
FURNISHING, USE, OR

PERFORMANCE OF THIS DOCUMENT
OR OF ANY INFORMATION CONTAINED
HEREIN. SHOULD KEYSIGHT AND THE
USER HAVE A SEPARATE WRITTEN
AGREEMENT WITH WARRANTY TERMS
COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH
THESE TERMS, THE WARRANTY
TERMS IN THE SEPARATE
AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT
WARRANT THIRD-PARTY SYSTEM-
LEVEL (COMBINATION OF CHASSIS,
CONTROLLERS, MODULES, ETC.)
PERFORMANCE, SAFETY, OR
REGULATORY COMPLIANCE, UNLESS
SPECIFICALLY STATED.

Technology Licenses
The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance with
the terms of such license.

U.S. Government Rights
The Software is “commercial computer
software,” as defined by Federal
Acquisition Regulation (“FAR”) 2.101.
Pursuant to FAR 12.212 and 27.405-3
and Department of Defense FAR
Supplement (“DFARS”) 227.7202, the
U.S. government acquires commercial
computer software under the same
terms by which the software is
customarily provided to the public.
Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User
License Agreement (EULA), a copy of
which can be found at
http://www.keysight.com/find/sweula. The
license set forth in the EULA represents
the exclusive authority by which the
U.S. government may use, modify,
distribute, or disclose the Software. The
EULA and the license set forth therein,
does not require or permit, among other
things, that Keysight: (1) Furnish
technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish
to, or otherwise provide, the

government rights in excess of these
rights customarily provided to the
public to use, modify, reproduce,
release, perform, display, or disclose
commercial computer software or
commercial computer software
documentation. No additional
government requirements beyond
those set forth in the EULA shall apply,
except to the extent that those terms,
rights, or licenses are explicitly required
from all providers of commercial
computer software pursuant to the FAR
and the DFARS and are set forth
specifically in writing elsewhere in the
EULA. Keysight shall be under no
obligation to update, revise or otherwise
modify the Software. With respect to
any technical data as defined by FAR
2.101, pursuant to FAR 12.211 and
27.404.2 and DFARS 227.7102, the U.S.
government acquires no greater than
Limited Rights as defined in FAR 27.401
or DFAR 227.7103-5 (c), as applicable in
any technical data.

Safety Notices

A CAUTION notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in damage to the product
or loss of important data. Do not
proceed beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

AWARNING notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in personal injury or death.
Do not proceed beyond a WARNING
notice until the indicated conditions are
fully understood and met.

The following safety precautions should
be observed before using this product
and any associated instrumentation.

This product is intended for use by
qualified personnel who recognize
shock hazards and are familiar with the

iii

http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula

vii

Contents

What You Will Learn in This Programmer's Guide 9

Related Websites 9

Related Documentation 10

Overall Process Flow 11

Installing Hardware, Software, and Licenses 13

APIs for the M9420A VXT Vector Transceiver 15

IVI Compliant or IVI Class Compliant 15

IVI Driver Types 16

IVI Driver Hierarchy 17

Instrument-Specific Hierarchies for M9420A 18

When Using Visual Studio 19

Naming Conventions Used to Program IVI Drivers 20

General IVI Naming Conventions 20

IVI-COM Naming Conventions 20

Creating a Project with IVI-COM Using C-Sharp 21

Step 1 - Create a Console Application 21

Step 2 - Add References 21

Step 3 - Add Using Statements 23

To Access the IVI Drivers Without Specifying or Typing The Full Path 23

Step 4 - Create Instances of the IVI-COM Drivers 23

To Create Driver Instances 24

Step 5 - Initialize the Driver Instances 24

Resource Names 24

Initialize() Parameters 24

Initialize() Options 25

Step 6 - Write the Program 26

Step 7 - Close the Driver 27

Step 8 - Building and Running a Complete Program Using Visual C-Sharp 27

Example Program 1- Code Structure 28

Example Program 1- How to Print Driver Properties, Check for Errors, and Close
Driver Sessions 28

Working with PA_FEM Measurements 33

Test Challenges Faced by Power Amplifier Testing 33

Performing a Channel Power Measurement, Using Immediate Trigger 35

Example Program 2 - Code Structure 35

Example Program 2 - Pseudo-code 36

Example Program 2 - Channel Power Measurement Using Immediate Trigger 37

Performing a WCDMA Power Servo and ACPR Measurement 40

Example Program 3 - Code Structure 40

Example Program 3 - Pseudo-code 41

Example Program 3 - WCDMA Power Servo and ACPR Measurement 42

References 49

Glossary 51

viii

What You Will Learn in This Programmer's Guide

Related Websites

M9420A Programming Guide 9

What You Will Learn in This Programmer's Guide
This programmer's guide is intended for individuals who write and run programs to
control test-and-measurement instruments. Specifically, in this programmer's guide,
you will learn how to use Visual Studio 2010 with the .NET Framework to write IVI-
COM Console Applications in Visual C#. Knowledge of Visual Studio 2010 with the
.NET Framework and knowledge of the programming syntax for Visual C# is required.

Our basic user programming model uses the IVI-COM driver directly and allows
customer code to:

Access the IVI-COM driver at the lowest level

Access IQ Acquisition Mode, Power Acquisition Mode, and Spectrum Acquisition
Mode

Control the Keysight M9420A VXT Vector Transceiver while performing
PA/FEM Power Measurement Production Tests

Generate waveforms created by Signal Studio software (licenses are required)

Example Program 1: How to Print Driver Properties, Check for Errors, and Close
Driver Sessions

Example Program 2: How to Perform a Channel Power Measurement Using
Immediate Trigger

Example Program 3: How to Perform a WCDMA Power Servo and ACPR
Measurement

Related Websites

Keysight Technologies PXI and AXIe Modular Products
M9420A VXT Vector Transceiver

Keysight Technologies
IVI Drivers & Components Downloads

Keysight I/O Libraries Suite

http://www.keysight.com/find/Modular
http://www.keysight.com/find/M9420A
http://www.keysight.com/
http://www.keysight.com/find/ivi
http://www.keysight.com/find/iosuite

What You Will Learn in This Programmer's Guide

RelatedDocumentation

GPIB, USB, & Instrument Control Products

Keysight VEE Pro

Technical Support, Manuals, & Downloads

Contact Keysight Test & Measurement

IVI Foundation - Usage Guides, Specifications, Shared Components Downloads

MSDN Online

Related Documentation

To access documentation related to the Keysight M9420A VXT Vector Transceiver
Programmer's Guide , use one of the following methods:

If the product software is installed on your PC, the related documents are also
available in the software installation directory.

Document Description Format

Getting
Started Guide

Includes procedures to help you to unpack,
inspect, install (software and hardware), perform
instrument connections, verify operability, and
troubleshoot your product.

PDF

IVI Driver
reference
(help system)

Provides detailed documentation of the IVI-COM
and IVI-C driver API functions, as well as
information to help you get started with using the
IVI drivers in your application development
environment.

CHM
(Microsoft

Help
Format)

X-series
Applications
Programmer's
Guide

Provides detailed documentation of the IVI-COM
and IVI-C driver API functions, as well as
information to help you get started with using the
IVI drivers in your application development
environment.

PDF

User's and
Programming
Reference

Describes the SCPI commands supported by the
M9420A VXT Vector Transceiver.

CHM
(Microsoft

Help
Format)

The documentation listed above is also available on the product CD.

To find the very latest versions of the user documentation, go to the product
web site (www.keysight.com/find/M9420A) and download the files from the
Manuals support page (go to Document Library > Manuals):

10 M9420A Programming Guide

http://www.keysight.com/find/io
http://www.keysight.com/find/vee
http://www.keysight.com/find/support
http://www.keysight.com/find/contactus
http://www.ivifoundation.org/
http://msdn.microsoft.com/
http://www.keysight.com/find/M9420A

What You Will Learn in This Programmer's Guide

Overall ProcessFlow

M9420A Programming Guide 11

Overall Process Flow

Perform the following steps:

1. Write source code using Microsoft Visual Studio 2010 with .NET Visual C#
running on Windows 7.

2. Compile source code using the .NET Framework Library.

3. Produce an Assembly.exe file – this file can run directly from Microsoft Windows
without the need for any other programs.

When using the Visual Studio Integrated Development Environment
(IDE), the Console Applications you write are stored in conceptual
containers called Solutions and Projects.

You can view and access Solutions and Projects using the Solution
Explorer window (View > Solution Explorer).

Installing Hardware, Software, and Licenses

M9420A Programming Guide 13

Installing Hardware, Software, and Licenses
Perform the following steps:

1. Unpack and inspect all hardware.

2. Verify the shipment contents.

3. Install the software. Note the following order when installing software.

a. Install Microsoft Visual Studio 2010 with .NET Visual C# running on
Windows 7.

You can also use a free version of Visual Studio Express 2010 tools from:
http://www.microsoft.com/visualstudio/eng/products/visual-studio-
2010-express

The following steps must be completed before programmatically
controlling the M9420A hardware with the IVI driver.

b. Install Keysight IO Libraries Suite (IOLS); this installation includes
Keysight Connection Expert.

c. Install the M9420A VXT software, Version 16.50 or newer.

Driver software includes all IVI-COM and IVI-C Drivers and
documentation. All of these items may be downloaded from the Keysight
product websites:

http://www.keysight.com/find/iosuite > Select Technical Support
> Select the Drivers, Firmware & Software tab > Download the
Keysight IO Libraries Suite Recommended

http://www.keysight.com/find/m9420a > Select Technical
Support > Select the Drivers, Firmware & Software tab >
Download the Instrument Driver.

http://www.keysight.com/find/ivi - download other installers for
Keysight IVI-COM drivers

4. Install the VXT modules and make cable connections. For detailed procedures,
please refer to M9420A Getting Started Guide.

The M9300A PXIe Reference must be included as part of the M9420A
configurations. The M9300A PXIe Reference must be initialized first so that the
other configurations that depend on the reference signal get the signal they are
expecting. If the configuration of modules that is initialized first does not include
the M9300A PXIe Reference, unlock errors will occur.

Once the software and hardware are installed and Self-Test has been
performed, they are ready to be programmatically controlled.

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/m9391a
http://www.keysight.com/find/ivi

APIs for the M9420A VXT Vector Transceiver

IVI Compliant or IVI Class Compliant

M9420A Programming Guide 15

APIs for the M9420A VXT Vector Transceiver
The following IVI driver terminology may be used when describing the Application
Programming Interfaces (APIs) for the M9420A VXT Vector Transceiver.

IVI[Interchangeable Virtual Instruments] - a standard instrument driver model defined
by the IVI Foundation that enables engineers to exchange instruments made by
different manufacturers without rewriting their code. www.ivifoundation.org

IVI Instrument Classes (Defined by the IVI Foundation)

Currently, there are 13 IVI Instrument Classes defined by the IVI Foundation. The
M9420A VXT Vector Transceiver do not belong to any of these 13 IVI Instrument
Classes and are therefore described as "NoClass" modules.

DC Power Supply

AC Power Supply

DMM

Function Generator

Oscilloscope

Power Meter

RF Signal Generator

Spectrum Analyzer

Switch

Upconverter

Downconverter

Digitizer

Counter/Timer

IVI Compliant or IVI Class Compliant

The M9420A VXT Vector Transceiver is IVI Compliant, but not IVI Class Compliant;
none of these belongs to one of the 13 IVI Instrument Classes defined by the IVI
Foundation.

IVI Compliant– means that the IVI driver follows architectural specifications for
these categories:

Installation

Inherent Capabilities

Cross Class Capabilities

Style

Custom Instrument API

http://www.ivifoundation.org/

APIs for the M9420A VXT Vector Transceiver

IVI Driver Types

IVI Class Compliant– means that the IVI driver implements one of the 13 IVI
Instrument Classes

If an instrument is IVI Class Compliant, it is also IVI Compliant

Provides one of the 13 IVI Instrument Class APIs in addition to a Custom
API

Custom API may be omitted (unusual)

Simplifies exchanging instruments

IVI Driver Types

IVI Driver

Implements the Inherent Capabilities Specification

Complies with all of the architecture specifications

May or may not comply with one of the 13 IVI Instrument Classes

Is either an IVI Specific Driver or an IVI Class Driver

IVI Class Driver
Is an IVI Driver needed only for interchangeability in IVI-C environments

The IVI Class may be IVI-defined or customer-defined

IVI Specific Driver
Is an IVI Driver that is written for a particular instrument such as the
M9420A VXT Vector Transceiver

16 M9420A Programming Guide

APIs for the M9420A VXT Vector Transceiver

IVI DriverHierarchy

M9420A Programming Guide 17

IVI Class-Compliant Specific Driver
IVI Specific Driver that complies with one (or more) of the IVI
defined class specifications

Used when hardware independence is desired

IVI Custom Specific Driver
Is an IVI Specific Driver that is not compliant with any one of the 13
IVI defined class specifications

Not interchangeable

This release is not binary compatible with prior releases of the IVI-C
driver. Programs using the C/C++ IVI-C driver must be recompiled for
this version of the driver. Similarly, programs compiledwith this
version of the driver will not be compatible with older versions of the
IVI-C driver. This incompatibility is due to renumbering of attribute
constants defined in the KtM9420.h include file.

IVI Driver Hierarchy

When writing programs, you will be using the interfaces (APIs) available to the IVI-
COM driver.

The core of every IVI-COM driver is a single object with many interfaces.

These interfaces are organized into two hierarchies: Class-Compliant
Hierarchy and Instrument-Specific Hierarchy – and both include the IIviDriver
interfaces.

Class-Compliant Hierarchy - Since the M9420A VXT Vector Transceiver
does not belong to one of the 13 IVI Classes, there is noClass-Compliant
Hierarchy in their IVI Driver.

Instrument-Specific Hierarchy
The M9420A VXT Vector Transceiver's instrument-specific
hierarchy has IKtM9420 at the root (where KtM9420 is the driver
name).

IKtM9420 is the root interface and contains references to
child interfaces, which in turn contain references to other
child interfaces. Collectively, these interfaces define the
Instrument-Specific Hierarchy.

The IIviDriver interfaces are incorporated into both hierarchies: Class-
Compliant Hierarchy and Instrument-Specific Hierarchy.

The IIviDriver is the root interface for IVI Inherent Capabilities which are
what the IVI Foundation has established as a set of functions and
attributes that all IVI drivers must include – irrespective of which IVI
instrument class the driver supports. These common functions and
attributes are called IVI inherent capabilities and they are documented in

APIs for the M9420A VXT Vector Transceiver

Instrument-Specific Hierarchies for M9420A

IVI-3.2 – Inherent Capabilities Specification. Drivers that do not support
any IVI instrument class such as the M9420A VXT Vector Transceiver
must still include these IVI inherent capabilities.

| | IiviDriver
Close
DriverOperation
Identity
Initialize
Initialized
Utility |

Instrument-Specific Hierarchies for M9420A

The following table lists the instrument-specific hierarchy interfaces for M9420A VXT
Vector Transceiver.

Keysight M9420A VXT Instrument-Specific Hierarchy

KtM9420 is the driver name

IKtM9420Ex is the root interface

18 M9420A Programming Guide

APIs for the M9420A VXT Vector Transceiver

Instrument-Specific Hierarchies for M9420A

M9420A Programming Guide 19

Keysight M9420A VXT Instrument-Specific Hierarchy

All new code being created should use the IKtM9420Ex extended
interfaces in place of the IKtM9420 interfaces. New functionalities
have been added to the IKtM9420Ex extended interfaces. These new
functionalities were not available in the original IKtM9420 interfaces,
and have been left unchanged to support previously written code;
this helps support backward code compatibility.

When Using Visual Studio

To view interfaces available in the M9420 PXIe VXT, right-click KtM9420Lib
library file, in the References folder, from the Solution Explorer window and
select View in Object Browser.

APIs for the M9420A VXT Vector Transceiver

Naming Conventions Used to Program IVI Drivers

Naming Conventions Used to Program IVI Drivers

General IVI Naming Conventions

All instrument class names start with "Ivi"
Example: IviScope, IviDmm

Function names
One or more words use PascalCasing

First word should be a verb

IVI-COM Naming Conventions

Interface naming
Class compliant: Starts with "IIvi"

I<ClassName>

Example: IIviScope, IIviDmm

Sub-interfaces add words to the base name that match the C hierarchy as
close as possible

Examples: IIviFgenArbitrary, IIviFgenArbitraryWaveform

Defined values
Enumerations and enum values are used to represent discrete values in
IVI-COM

<ClassName><descriptive words>Enum

Example: IviScopeTriggerCouplingEnum

Enum values don't end in "Enum" but use the last word to differentiate
Examples: IviScopeTriggerCouplingAC and IviScopeTriggerCouplingDC

20 M9420A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 1 - Create a Console Application

M9420A Programming Guide 21

Creating a Project with IVI-COM Using C-Sharp
This tutorial will walk through the various steps required to create a console
application using Visual Studio and C#. It demonstrates how to instantiate two driver
instances, set the resource names and various initialization values, initialize the two
driver instances, print various driver properties to a console for each driver instance,
check drivers for errors and report the errors if any occur, and close both drivers.

Step 1. - Create a "Console Application"
Step 2. - Add References
Step 3. - Add using Statements
Step 4. - Create an Instance
Step 5. - Initialize the Instance
Step 6. - Write the Program Steps (Create a Signal or Perform a Measurement)
Step 7. - Close the Instance

At the end of this tutorial is a complete example program that shows what the
console application looks like if you follow all of these steps.

Step 1 - Create a Console Application

Projects that use a Console Application do not show a Graphical User
Interface (GUI) display.

1. Launch Visual Studio and create a new Console Application in Visual C# by
selecting: File > New > Project and select a Visual C# Console Application.

2. Enter "VxtProperties" as the Name of the project and click OK.

When you select New, Visual Studio will create an
emptyProgram.csfile that includes some necessary code,
including using statements. This code is required, so do not
delete it.

3. Select Project and click Add Reference. The Add Reference dialog appears.
For this step, Solution Explorer must be visible (View > Solution Explorer) and
the "Program.cs" editor window must be visible; select the Program.cs tab to
bring it to the front view.

Step 2 - Add References

In order to access the M9420A VXT driver interfaces, references to their drivers (DLL)
must be created.

1. In Solution Explorer, right-click on References and select Add Reference.

2. From the Add Reference dialog, select the COM tab.

Creating a Project with IVI-COM Using C-Sharp

Step 2 - AddReferences

3.

Click on any of the type libraries under the "Component Name" heading and
enter the letter "I".(All IVI drivers begin with IVI so this will move down the list of
type libraries that begin with "I".)

If you have not installed the IVI driver for the M9420A VXT
product (as listed in the previous section titled "Before
Programming, Install Hardware, Software, and Software
Licenses"), the IVI drivers will not appear in this list.

Also, the TypeLib Version that appears will depend on the version of the IVI
driver that is installed. The version numbers change over time and typically
increase as new drivers are released.
If the TypeLib Version that is displayed on your system is higher than the ones
shown in this example, your system simply has newer versions – newer
versions may have additional commands available.
To get the IVI drivers to appear in this list, you must close this Add Reference
dialog, install the IVI drivers, and come back to this section and repeat "Step 2 –
Add References".

4.

Scroll to IVI section and, using Shift-Ctrl, select the following type libraries
then select OK.
IVI KtM9420x 1.2 Type Library

When any of the references for the KtM9420A are added, the
IVIDriver 1.0 Type Library is also automatically added. This is
visible as IviDriverLib under the project Reference; this
reference houses the interface definitions for IVI inherent
capabilities which are located in the file IviDriverTypeLib.dll
(dynamically linked library).

5.

These selected type libraries appear under the References node, in Solution
Explorer, as:

22 M9420A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 3 -Add Using Statements

M9420A Programming Guide 23

The program looks same as before you added the References,
with the difference that the IVI drivers that are referenced are
now available for use.

To allow your program to access the IVI drivers without specifying full path
names of each interface or enum, you need to add using statements to your
program.

Step 3 - Add Using Statements

All data types (interfaces and enums) are contained within namespaces. (A
namespace is a hierarchical naming scheme for grouping types into logical categories
of related functionality. Design tools, such as Visual Studio, can use namespaces
which makes it easier to browse and reference types in your code.)The C# using
statement allows the type name to be used directly. Without the using statement, the
complete namespace-qualified name must be used. To allow your program to access
the IVI driver without having to type the full path of each interface or enum, type the
following using statements immediately below the other using statements. The
following example illustrates how to add using statements.

To Access the IVI Drivers Without Specifying or Typing The Full Path

These using statements should be added to your program:
using Ivi.Driver.Interop;
using Keysight.KtM9420.Interop;

You can create sections of code in your program that can be
expanded and collapsed by surrounding the code with #region and
#endregion keywords. Select – or + symbol to collapse or expand the
region.

Step 4 - Create Instances of the IVI-COM Drivers

There are two ways to instantiate (create an instance of) the IVI-COM drivers:

Direct Instantiation

COMSession Factory

Since the M9420A VXT Vector Transceiver is considered NoClass module(because
they do not belong to one of the 13 IVI Classes), the COM Session Factory is not used

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

to create instances of their IVI-COM drivers. So, M9420A VXT Vector Transceiver IVI-
COM driver uses direct instantiation. Because direct instantiation is used, their IVI-
COM drivers may not be interchangeable with other modules.

To Create Driver Instances

The new operator is used in C# to create an instance of the driver.

IKtM9420 Driver = new KtM9420();

Step 5 - Initialize the Driver Instances

The Initialize()method is required when using any IVI driver. It establishes a
communication link (an "I/O session") with an instrument and it must be called before
the program can do anything with an instrument or work in simulation mode.

The Initialize()method has a number of options that can be defined. In this
example, we prepare the Initialize()method by defining only a few of the
parameters, then we call the Initialize()method with these parameters:

Resource Names

If you are using Simulate Mode, you can set the Resource Name address string
to:
string VxtResourceName = "%";

If you are actually establishing a communication link (an "I/O session") with an
instrument, you need to determine the Resource Name address string (VISA
address string) that is needed.You can use an IO application such as
Agilent/Keysight Connection Expert, Agilent/Keysight Command Expert,
National Instruments Measurement and Automation Explorer (MAX) to get the
physical Resource Name string.

In this guide, the example programs use the address below for M9420A VXT
Vector Transceiver.

Module Name Slot Number VISA Address

M9420A VXT Vector Transceiver 2 PXI0::23-0.0::INSTR

Initialize() Parameters

Although the Initialize()method has a number of options that can
be defined (see Initialize Options below), we are showing this
example with a minimum set of options to helpminimize complexity.

24 M9420A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 5 - Initialize the Driver Instances

M9420A Programming Guide 25

string VxtResourceName = "PXI0::23-0.0::INSTR;

bool IdQuery = true;
bool Reset = true;

string VxtOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VXT, Trace=false";

// Initialize the drivers
VxtDriver.Initialize(VxtResourceName, IdQuery, Reset, VxtOptionString);
Console.WriteLine("VXT Driver Initialized");

The above example shows how IntelliSense is invoked by simply rolling the cursor
over the word "Initialize".

One of the key advantages of using C# in the Microsoft Visual Studio
Integrated Development Environment (IDE) is IntelliSense.
IntelliSense is a form of auto-completion for variable names and
functions and a convenient way to access parameter lists and ensure
correct syntax. This feature also enhances software development by
reducing the amount of keyboard input required.

Initialize() Options

The following table describes options that are most commonly used with the
Initialize()method.

Property Type and
Example Value

Description of Property

string ResourceName =
PXI[bus]::device
[::function][::INSTR]

string ResourceName
= "PXI13::0::0::INSTR";

VxtResourceName – The driver is typically initialized using a physical
resource name descriptor, often a VISA resource descriptor.

See the procedure in the Resource Names section.

bool IdQuery = true; Setting the ID query to false prevents the driver from verifying that
the connected instrument is the one the driver was written for
because if IdQuery is set to true, this will query the instrument
model and fail initialization if the model is not supported by the
driver.

bool Reset = true; Setting Reset to true instructs the driver to initially reset the
instrument.

string OptionString =
"QueryInstrStatus=true,

OptionString - Setup the following initialization options:

Creating a Project with IVI-COM Using C-Sharp

Step6 - Write the Program

Property Type and
Example Value

Description of Property

Simulate=true, QueryInstrStatus=true (Specifies whether the IVI specific
driver queries the instrument status at the end of each user
operation.)

Simulate=true (Setting Simulate to true instructs the driver
to not to attempt to connect to a physical instrument, but use
a simulation of the instrument instead.)

Cache=false (Specifies whether or not to cache the value of
properties.)

InterchangeCheck=false (Specifies whether the IVI specific
driver performs interchangeability checking.)

RangeCheck=false (Specifies whether the IVI specific driver
validates attribute values and function parameters.)

RecordCoercions=false (Specifies whether the IVI specific
driver keeps a list of the value coercions it makes for ViInt32
and ViReal64 attributes.)

DriverSetup= "; DriverSetup= (This is used to specify settings that are
supported by the driver, but not defined by IVI. If the Options
String parameter (OptionString in this example) contains an
assignment for the Driver Setup attribute, the Initialize
function assumes that everything following 'DriverSetup=' is
part of the assignment.)

If these drivers were installed, additional information can be found under Initializing
the IVI-COMDriver from the following:

KtM9420x IVI Driver Reference
Start > All Programs > Keysight Instrument Drivers > IVI-COM-C Drivers > KtM9420 >
KtM9420x IVI Driver Help

Step 6 - Write the Program

At this point, you can add program steps that use the driver instances to perform
tasks.

In this example, perform the following steps:

Below is the corresponding code in C#:

// Set the output frequency to 1 GHz
Driver.Source.RF.Frequency = 1000000000;
// Set the output level to 0 dBm

26 M9420A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 7 - Closethe Driver

M9420A Programming Guide 27

Driver.Source.RF.Level = 0;
// Enables the RF Output
Driver.Source.RF.OutputPort = KtM9420PortEnum.KtM9420PortRFOutput;
// Apply all the setting above
Driver.Apply();

Step 7 - Close the Driver

Calling Close() at the end of the program is required by the IVI specification when
using any IVI driver.

Important! Close() may be the most commonly missed step when using an IVI driver.
Failing to do this could mean that system resources are not freed up and your
program may behave unexpectedly on subsequent executions.

{
if(Driver!= null && Driver.Initialized)
{

// Close the driver
Driver.Close();
Console.WriteLine("");

Console.WriteLine("driver Closed\n");
}

}

Step 8 - Building and Running a Complete Program
Using Visual C-Sharp

Build your console application and run it to verify it works properly.

1. Open the solution file SolutionNameThatYouUsed.sln in Visual Studio 2010.

2. Set the appropriate platform target for your project.

3. Choose Project > ProjectNameThatYouUsed Properties and select Build |
Rebuild Solution.

Tip: You can also do the same thing from the Debug menu by clicking
Start Debugging or pressing the F5 key.

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

Example Program 1- Code Structure

The following example code builds on the previously presented Tutorial: Creating a
Project with IVI-COMUsing C# and demonstrates how to instantiate two driver
instances, set the resource names and various initialization values, initialize the two
driver instances, print various driver properties for each driver instance, check drivers
for errors and report the errors if any occur, and close the drivers.

Example Program 1- How to Print Driver Properties, Check for
Errors, and Close Driver Sessions

// Copy the following example code and compile it as a C# Console Application
// Example__VxtProperties.cs
#region Specify using Directives

28 M9420A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

M9420A Programming Guide 29

using System;
using Keysight.KtM9420.Interop;
#endregion

namespace CS_Diagnostics
{

/// <summary>
///
/// Keysight IVI-C Driver Example Program
///
/// Initializes the driver, reads a few Identity interface
/// properties, and initiates instrument specific functionality.
/// Runs in simulation mode without an instrument.
///
/// Requires a COM reference to the driver's type library.
///
/// </summary>
public class App
{

[STAThread]
public static void Main(string[] args)
{

Console.WriteLine("CS_Diagnostics");
Console.WriteLine();

KtM9420 driver = null;

// Pass in a command line argument as the resource descriptor, if
none, will default

string resource = "PXI0::23-0.0::INSTR"; // Use the hardware
associated with the connection named "KtM9420"

string options = "QueryInstrStatus=true, Simulate=false,
DriverSetup= ";

if(args.Length > 0)
{

resource = args[0];
options = "QueryInstrStatus=true, Simulate=false,

DriverSetup= ";
}

try
{

// Create driver instance
driver = new KtM9420();

#region Initialize Driver Instances
const bool idquery = true;
const bool reset = true;

// Initialize the driver. See driver help topic

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

"Initializing the IVI-COM Driver" for additional information
driver.Initialize(resource, idquery, reset, options);

#endregion

#region Check for Errors
int errorcode = 0;
string message = string.Empty;

// Clear startup messages and warnings if any.
do
{

driver.Utility.ErrorQuery(ref errorcode, ref message);
if(errorcode != 0)
{

Console.WriteLine(message);
}

} while(errorcode != 0);

Console.WriteLine("Driver Initialized");

#endregion

#region Print Driver Properties

Console.WriteLine("Identifier: {0}",
driver.Identity.Identifier);

Console.WriteLine("Revision: {0}",
driver.Identity.Revision);

Console.WriteLine("Vendor: {0}",
driver.Identity.Vendor);

Console.WriteLine("Description: {0}",
driver.Identity.Description);

Console.WriteLine("Model: {0}",
driver.Identity.InstrumentModel);

Console.WriteLine("FirmwareRev: {0}",
driver.Identity.InstrumentFirmwareRevision);

Console.WriteLine("Serial #: {0}",
driver.System.SerialNumber);

Console.WriteLine("Simulate: {0}",
driver.DriverOperation.Simulate);

Console.WriteLine();
#endregion

}
catch(Exception ex)
{

Console.WriteLine(ex.Message);
}
finally

30 M9420A Programming Guide

Creating a Project with IVI-COM Using C-Sharp

Step 8 - Building and Running a Complete Program Using VisualC-Sharp

M9420A Programming Guide 31

{
#region Close Driver Instances
if (driver != null && driver.Initialized)
{

// Close the driver
driver.Close();
Console.WriteLine("");
Console.WriteLine("Driver Closed");

}
#endregion

}
Console.WriteLine("");
Console.WriteLine("\nDone - Press Enter to Exit");
Console.ReadLine();

}
}

}

Working with PA_FEM Measurements

Test Challenges Faced by Power Amplifier Testing

M9420A Programming Guide 33

Working with PA_FEM Measurements
The RF front end of a product includes all of the components between an antenna and
the baseband device. The purpose of an RF front end is to upconvert a baseband
signal to RF that can be used for transmission by an antenna. An RF front end can also
be used to downconvert an RF signal that can be processed with ADC circuitry. As an
example, the RF signal that is received by a cellular phone is the input into the front
end circuitry and the output is a down-converted analog signal in the intermediate
frequency (IF) range. This down-converted signal is the input to a baseband device, an
ADC. For the transmit side, a DAC generates the signal to be up-converted, amplified,
and sent to the antenna for transmission. Depending on whether the system is a Wi-
Fi, GPS, or cellular radio will require different characteristics of the front end devices.

RF front end devices fall into a few major categories: RF Power Amplifiers, RF Filters
and Switches, and FEMs [Front End Modules].

RF Power Amplifiers and RF Filters and Switches typically require the following:
PA[Power Amplifier] – Production Tests which include:

Channel Power - Power Acquisition Mode is used to return one
value back through the API.

ACPR [Adjacent Channel Power Ratio] – When making fast ACPR
measurements, "Baseband Tuning" is used to digitally tune the
center frequency in order to make channel power measurements,
at multiple offsets, using the Power Acquisition interface.

Servo Loop- When measuring a power amplifier, one of the key
measurements is performing a Servo Loop because when you
measure a power amplifier:

it is typically specified at a specific output power

there is a need to adjust the source input level until you
measure the exact power level - to do this, you will
continually adjust the source until you achieve the specified
output power then you make all of the ACPR and harmonic
parametric measurements at that level.

FEMs [Front End Modules] – which could be a combination of multiple front end
functions in a single module or even a "Switch Matrix" that switches various
radios (such as Wi-Fi, GSM, PCS, Bluetooth, etc.) to the antenna.

Test Challenges Faced by Power Amplifier Testing

The following are the test challenges faced by Power Amplifier Testing:

Working with PA_FEM Measurements

Test Challenges Faced by Power Amplifier Testing

The need to quickly adjust power level inputs to the device under test (DUT).

The need to assess modulation performance (i.e., ACPR and EVM) at high
output power levels.

The figure below shows a simplified block diagram for the M9420 VXT Vector
Transceiver in a typical PA / FEM test system.

Typical power amplifier modules require an input power level of 0 to + 5 dBm, digitally
modulated according to communication standards such as WCDMA or LTE. The
specified performance of the power amplifier or front end module is normally set at a
specific output level of the DUT. If the devices have small variations in gain, it may be
necessary to adjust the power level from the source to get the correct output level of
the DUT. Only after the DUT output level is set at the correct value can the specified
parameters be tested. The time spent adjusting the source to get the correct DUT
output power can be a major contributor to the test time and the overall cost of test.

The source is connected to the DUT using a cable and switches. The switching may
be used to support testing of multi-band modules or multi-site testing. The complexity
of the switching depends on the number of bands in the devices and the number of
test sites supported by the system. The DUTs are typically inserted into the test
fixture using an automated part handler. In some cases, several feet of cable is
required between the source and the input of the DUT.

The combination of the RF cables and the switching network can add several dB of
loss between the output of the source and the input of the DUT, which requires higher
output levels from the source. Since the tests are performed with a modulated signal,
the source must also have adequate modulation performance at the higher power
levels.

34 M9420A Programming Guide

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

M9420A Programming Guide 35

Performing a Channel Power Measurement, Using
Immediate Trigger

Standard
Sample
Rate

Channel Filter
Type

Channel Filter
Parameter

Channel Filter
Bandwidth

Channel
Offsets

WCDMA 5 MHz RRC 0.22 3.84 MHz 5, 10
MHz

LTE 10 MHz FDD 11.25
MHz

Rectangular N/A 9 MHz 10, 20
MHz

LTE 10 MHz TDD 11.25
MHz

Rectangular N/A 9 MHz 10, 20
MHz

1xEV-DO 2 MHz RRC 0.22 1.23 MHz 1.25, 2.5
MHz

TD-SCDMA 2 MHz RRC 0.22 1.28 MHz 1.6, 3.2
MHz

GSM/EDGE
Channel

1.25
MHz

Gaussian 0.3 271 kHz

GSM/EDGEORFS 1.25
MHz

TBD TBD 30 kHz 400,
600kHz

Example Program 2 - Code Structure

The following example code demonstrates how to instantiate a driver instance, set
the resource name and various initialization values, initialize the driver instances, and
perform other relevant tasks:

1. Send Source GeneratePowerRampArb, LoadWaveform and Modulation
commands to the M9420A VXT driver.

2. Send Receiver RF and Power Acquisition commands to the M9420A VXT driver
and Apply changes to hardware,

3. Check the instrument queue for errors.

4. Perform a Channel Power Measurement,

5. Report errors if any occur, and close the driver.

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

Example Program 2 - Pseudo-code

Initialize Driver for VXT, Check for Errors

36 M9420A Programming Guide

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

M9420A Programming Guide 37

Send RF Settings to VXT Driver:
Frequency

Level

Peak to Average Ratio

Conversion Mode

IF Bandwidth

Set Acquisition Mode to "Power"

Send Power Acquisition Setting to VXT Driver:
Sample Rate

Duration

Channel Filter

Apply Method to Send Changes to Hardware
Wait for Hardware to Settle

Send Arm Method to VXT

Send Read Power Method to VXT

Close Driver for VXT

Example Program 2 - Channel Power Measurement Using
Immediate Trigger

// Copy the following example code and compile it as a C# Console Application
#region Specify using Directives
using System;
using Ivi.Driver.Interop;
using Keysight.KtM9420.Interop;
#endregion

namespace ChannelPowerImmTrigger
{

class Program
{

static void Main(string[] args)
{

KtM9420 driver = null;

// Create driver instances
driver = new KtM9420();
try
{

#region Initialize Driver Instances

string ResourceName = "PXI0::23-0.0::INSTR";
bool IdQuery = true;

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

bool Reset = true;
string OptionString = "QueryInstrStatus=true,

Simulate=false,DriverSetup= ";
driver.Initialize(ResourceName, IdQuery, Reset,OptionString);
Console.WriteLine("Driver Initialized\n");

#endregion

#region Check Instrument Queue for Errors

int errorcode = 0;
string message = string.Empty;
// Check instrument for errors
do
{

driver.Utility.ErrorQuery(ref errorcode, ref message);
if(errorcode != 0)
{

Console.WriteLine(message);
}

} while(errorcode != 0);

#endregion

#region Setup Source
string testWaveform = "CW";
driver.Source.GeneratePowerRampArb("CW", 0, 0, 1e-3, 25e6);
string WaveformfilePath = "C:\\Program Files\\Keysight\\X-

Series\\MTRX\\Infrastructure\\Waveform";
driver.Source.LoadWaveform(WaveformfilePath, testWaveform);
driver.Source.Modulation.ArbPlayConfigure(

WaveformName: testWaveform,
ArbPlayMode:

KtM9420ArbPlayModeEnum.KtM9420ArbPlayModePlayArb,
ArbPlayDuration: 1e-4

);
#endregion

#region Receiver Settings
// Receiver Settings
double Frequency = 2000000000.0;
double Level = 5;
double RmsValue = 5;
double ChannelTime = 0.0001;
double MeasureBW = 5000000.0;
KtM9420ChannelFilterShapeEnum FilterType =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRaisedCosine;
double FilterAlpha = 0.22;
double FilterBw = 3840000.0;
double MeasuredPower = 0;

38 M9420A Programming Guide

Working with PA_FEM Measurements

Performing a Channel Power Measurement, Using ImmediateTrigger

M9420A Programming Guide 39

bool Overload = true;
#endregion

#region Run Commands
// Setup the RF Path in the Receiver
driver.Receiver.RF.Frequency = Frequency;
driver.Receiver.RF.Power = Level;
driver.Receiver.RF.PeakerToAverage = RmsValue;

// Configure the Acquisition
driver.AcquisitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModePower;
driver.PowerAcquisition.Bandwidth = MeasureBW; // 5 MHz
driver.PowerAcquisition.Duration = ChannelTime; // 100 us
driver.PowerAcquisition.ChannelFilter.Configure

(FilterType,FilterAlpha, FilterBw);
// Send Changes to hardware
driver.Apply();

string response = "y";
while (string.Compare(response, "y") == 0)
{

Console.WriteLine("Press Enter to Run Test");
Console.ReadLine();
driver.Arm();
driver.WaitForData(100);

#region Check for error
errorcode = 0;
message = string.Empty;
// Check instrument for errors
do
{

driver.Utility.ErrorQuery(ref errorcode, ref
message);

if (errorcode != 0)
{

Console.WriteLine(message);
}

} while (errorcode != 0);
#endregion

driver.PowerAcquisition.ReadPower(0, ref MeasuredPower,
ref Overload);

Console.WriteLine("Measured Power: " + MeasuredPower +
"dBm");

Console.WriteLine(String.Format("Overload = {0}",
Overload ? "true" : "false"));

Console.WriteLine("Repeat? y/n");
response = Console.ReadLine();

}

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

#endregion

}
catch (Exception ex)
{

Console.WriteLine("Exceptions for the drivers:\n");
Console.WriteLine(ex.Message);

}
finally
#region Close Driver Instances
{

if (driver != null && driver.Initialized)
{
// Close the driver
driver.Close();
Console.WriteLine("Driver Closed\n");
}

}
#endregion

Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();

}

}
}

Performing a WCDMA Power Servo and ACPR
Measurement

When making a WCDMA Power Servo and ACPR measurement, Servo is performed
using "Baseband Tuning" to adjust the source amplitude and then "Baseband Tuning"
is used to digitally tune the center frequency in order to make channel power
measurements, at multiple offsets, using the Power Servo interface of the M9420A
VXT.

Example Program 3 - Code Structure

The following example code demonstrates how to instantiate driver instances, set the
resource names and various initialization values, initialize the driver instances, and
perform the other relevant tasks:

1. Send Source RF and LoadWaveform commands to the M9420 VXT driver,

2. Send Receiver RF commands to the M9420 VXT driver,

3. Send Power Servo and ACPR configuration command to M9420 VXT driver,

40 M9420A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9420A Programming Guide 41

4. Send Meaurement Process command to run a Servo Loop and ACPR
measuremennt,

5. Read Power Servo and ACPR Measurement result,

6. Close the driver.

Example Program 3 - Pseudo-code

Initialize Drivers for VXT and check for errors

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

Configure Source RF Settings:
Frequency

RF Level

RF Output Port and Enable On

Configure ARBPLAY Settings:
Load WCDMA Signal Studio File

Get RMS Value

Play ARB File

Configure Receiver RF Settings:
Frequency

Level

Peak to Average Ratio

Input Port

Configure Power Servo Settings

Enable Power Servo Measurement

Acquisition Mode

Acquisition Settings

Power Servo Settings

Configure ACPR Settings

Enable ACPR Measurement

ACPR Measurement Settings

 Enable VXT Settings:
Source Settings

Receiver Settings

Apply All Above Settings and Measurements

Read Power Servo Results
Measured Power

Pass/Fail

Overload

Servo Count

Read ACPR Results
ACPR Values

Overload

Example Program 3 - WCDMA Power Servo and ACPR
Measurement

// Copy the following example code and compile it as a C# Console Application
#region Specify using Directives

42 M9420A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9420A Programming Guide 43

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ivi.Driver.Interop;
using Keysight.KtM9420.Interop;
#endregion

namespace PaServoAcpr
{

class Program
{

static void Main(string[] args)
{

// Create driver instances
KtM9420 driver = new KtM9420();
try
{

#region Initialize Driver Instances

string ResourceName = "PXI0::23-0.0::INSTR";
bool IdQuery = true;
bool Reset = true;
string OptionString = "QueryInstrStatus=true,

Simulate=false,DriverSetup= ";
driver.Initialize(ResourceName, IdQuery, Reset,OptionString);
Console.WriteLine("Driver Initialized\n");

#endregion

#region Check Instrument Queue for Errors

int errorcode = 0;
string message = string.Empty;
// Check instrument for errors
do
{

driver.Utility.ErrorQuery(ref errorcode, ref message);
if(errorcode != 0)
{

Console.WriteLine(message);
}

} while(errorcode != 0);

#endregion
#region Create Default Settings for WCDMA Uplink Signal
// Source Settings
double Frequency = 1000000000.0;
double Level = 3;
double Gain = 0;

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

double PowerOutMargin = 0.05;
double ServoOverheadTime = 600e-6;
// If a Signal Studio waveform file is used, it may require a

software license.
string ExamplesFolder = "C:\\Program Files (x86)

\\Keysight\\M9420\\Example Waveforms\\";
string WaveformFile = "WCDMA_UL_DPCHH_2DPDCH_1C.wfm";
// Receiver Settings
double ChannelTime = 0.0001;
double AdjacentTime = 0.0005;
double IfBandwidth = 40000000.0;
double MeasureBW = 5000000.0;
KtM9420ChannelFilterShapeEnum FilterType =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRaisedCosine;
double FilterAlpha = 0.22;
double FilterBw = 3840000.0;
double AcprFliterBw = 3840000.0;
double AcprFilterAlpha = 0.22;
KtM9420ChannelFilterShapeEnum AcprFilterType =

KtM9420ChannelFilterShapeEnum.KtM9420ChannelFilterShapeRaisedCosine;
double[] FreqOffset = new double[] {-5000000.0, 5000000.0, -

10000000.0, 10000000.0};
double[] acprFilterAlpha = new double[4] {AcprFilterAlpha,

AcprFilterAlpha, AcprFilterAlpha, AcprFilterAlpha};
double[] acprFilterBw = new double[4] {AcprFliterBw,

AcprFliterBw, AcprFliterBw, AcprFliterBw};
KtM9420ChannelFilterShapeEnum[] acprFilterType = new

KtM9420ChannelFilterShapeEnum[4] {AcprFilterType, AcprFilterType,
AcprFilterType, AcprFilterType};

double AcprSpan = 30.72e6 / 1.25;
double AcprDuration = AdjacentTime;
double[] acprSpan = new double[4]{AcprSpan, AcprSpan,

AcprSpan, AcprSpan};
double[] acprDuration = new double[4]{AcprDuration,

AcprDuration, AcprDuration, AcprDuration};
double MeasuredPower = 0;

bool ServoPass = false;
int ServoCount = 0;
bool Overload = true;
double[] MeasuredACPR = new double[4];
bool[] MeasuredACPROverload = new bool[4];
double RmsValue = 0;
#endregion

#region Run Commands
//Setup Source
driver.Source.RF.Frequency = Frequency;
driver.Source.RF.Level = Level;
driver.Source.RF.OutputPort =

KtM9420PortEnum.KtM9420PortRFOutput;

44 M9420A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9420A Programming Guide 45

driver.Source.RF.OutputEnable = true;
driver.Source.LoadWaveform(ExamplesFolder, WaveformFile);
RmsValue = driver.Source.Modulation.ArbRmsValue;
driver.Source.Modulation.ArbPlayConfigure(

WaveformName: WaveformFile,
ArbPlayMode:

KtM9420ArbPlayModeEnum.KtM9420ArbPlayModePlayArb,
ArbPlayDuration: 1e-4

);

// Setup Receiver
driver.Receiver.RF.Frequency = Frequency;
driver.Receiver.RF.Power = Level;
driver.Receiver.RF.PeakerToAverage = RmsValue;
driver.Receiver.RF.InputPort =

KtM9420PortEnum.KtM9420PortRFInput;

// Configure PowerServo
driver.Measurement.EnabledMeasurements = (int)

KtM9420MeasurementsEnum.KtM9420MeasurementsPowerServo;
driver.Measurement.PowerServo.AcqusitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeFFT;

driver.FFTAcquisition.SampleRate = MeasureBW*1.25;
driver.FFTAcquisition.Length =

KtM9420FFTAcquisitionLengthEnum.KtM9420FFTAcquisitionLength_512;
driver.FFTAcquisition.Duration = ChannelTime;
driver.FFTAcquisition.ChannelFilter.Configure

(FilterType,FilterAlpha, FilterBw);

driver.Measurement.PowerServo.InputPower = Level + Gain;
driver.Measurement.PowerServo.OutputPower = Level;
driver.Measurement.PowerServo.OutputPowerMargin =

PowerOutMargin;
driver.Measurement.PowerServo.OverheadTime =

ServoOverheadTime;
driver.Measurement.PowerServo.MaximumOutputPower = 20;

//Configure Acpr
driver.Measurement.EnabledMeasurements |= (int)

KtM9420MeasurementsEnum.KtM9420MeasurementsAcpr;
driver.Measurement.Acpr.AcquisitionMode =

KtM9420AcquisitionModeEnum.KtM9420AcquisitionModeFFT;
driver.Measurement.Acpr.UseChanPwrForRef = true;
driver.Measurement.Acpr.ConfigureFilter

(acprFilterType,acprFilterAlpha,acprFilterBw);
driver.Measurement.Acpr.SetAcprParameter

(FreqOffset,acprSpan,acprDuration);

//Setup all hardware in one time.

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

driver.Measurement.EnabledMeasurements |= (int)
KtM9420MeasurementsEnum.KtM9420MeasurementsSetupVsa;

driver.Measurement.EnabledMeasurements |= (int)
KtM9420MeasurementsEnum.KtM9420MeasurementsSetupVsaFrequency;

driver.Measurement.EnabledMeasurements |= (int)
KtM9420MeasurementsEnum.KtM9420MeasurementsSetupVsg;

driver.Measurement.EnabledMeasurements |= (int)
KtM9420MeasurementsEnum.KtM9420MeasurementsSetupVsgFrequency;

string response = "y";
while (string.Compare(response, "y") == 0)
{
Console.WriteLine("Press Enter to Run Test");
Console.ReadLine();

//Process measurement
driver.Measurement.Process();

// Check instrument for errors
do
{

driver.Utility.ErrorQuery(ref errorcode, ref message);
if(errorcode != 0)
{

Console.WriteLine(message);
}

} while(errorcode != 0);

//Read PowerServo
driver.Measurement.PowerServo.ReadPowerServo(ref

MeasuredPower,ref ServoPass, ref Overload, ref ServoCount);
Console.WriteLine("Measured Power {0}dbm , Servo pass is {1},

Servo Count is {2}, Servo Overload is {3}",
MeasuredPower, ServoPass, ServoCount, Overload);

driver.Measurement.Acpr.ReadAcpr(ref MeasuredACPR, ref
MeasuredACPROverload);

Console.WriteLine("ACPR1 L: {0} dBc, Overload is {1}",
MeasuredACPR[0], MeasuredACPROverload[0]);

Console.WriteLine("ACPR1 U: {0} dBc, Overload is {1}",
MeasuredACPR[1], MeasuredACPROverload[1]);

Console.WriteLine("ACPR2 L: {0} dBc, Overload is {1}",
MeasuredACPR[2], MeasuredACPROverload[2]);

Console.WriteLine("ACPR2 U: {0} dBc, Overload is {1}",
MeasuredACPR[3], MeasuredACPROverload[3]);

Console.WriteLine("Repeat? y/n");
response = Console.ReadLine();
}

46 M9420A Programming Guide

Working with PA_FEM Measurements

Performing a WCDMA Power Servo and ACPR Measurement

M9420A Programming Guide 47

#endregion
}

catch (Exception ex)
{
Console.WriteLine("Exceptions for the drivers:\n");
Console.WriteLine(ex.Message);
}
finally
#region Close Driver Instances
{

if (driver != null && driver.Initialized)
{

// Close the driver
driver.Close();
Console.WriteLine("Driver Closed");

}
}
#endregion

Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();
}

}
}

References

M9420A Programming Guide 49

References
Understanding Drivers and Direct I/O, Application Note 1465-3 (Agilent Part
Number: 5989-0110EN)

Digital Baseband Tuning Technique Speeds Up Testing, by Bill Anklam, Victor
Grothen and Doug Olney, Agilent Technologies, Santa Clara, CA, April 15,
2013, Microwave Journal

Accelerate Development of Next Generation 802.11ac Wireless LAN
Transmitters-Overview, Application Note (Agilent Part Number: 5990-9872EN)

www.ivifoundation.org

http://www.ivifoundation.org/

Glossary

M9420A Programming Guide 51

Glossary
ADE (application development environment) — An integrated suite of software
development programs. ADEs may include a text editor, compiler, and
debugger, as well as other tools used in creating, maintaining, and debugging
application programs. Example: Microsoft Visual Studio.

API (application programming interface) — An API is a well-defined set of set of
software routines through which application program can access the functions
and services provided by an underlying operating system or library. Example:
IVI Drivers

C# (pronounced "C sharp") — C-like, component-oriented language that
eliminates much of the difficulty associated with C/C++.

Direct I/O — commands sent directly to an instrument, without the benefit of, or
interference from a driver. SCPI Example: SENSe:VOLTage:RANGe:AUTO Driver
(or device driver) — a collection of functions resident on a computer and used to
control a peripheral device.

DLL (dynamic link library) — An executable program or data file bound to an
application program and loaded only when needed, thereby reducing memory
requirements. The functions or data in a DLL can be simultaneously shared by
several applications.

Input/Output (I/O) layer — The software that collects data from and issues
commands to peripheral devices. The VISA function library is an example of an
I/O layer that allows application programs and drivers to access peripheral
instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard instrument driver model
defined by the IVI Foundation that enables engineers to exchange instruments
made by different manufacturers without rewriting their code.
www.ivifoundation.org

IVI COM drivers (also known as IVI Component drivers) — IVI COM presents the
IVI driver as a COM object in Visual Basic. You get all the intelligence and all the
benefits of the development environment because IVI COM does things in a
smart way and presents an easier, more consistent way to send commands to
an instrument. It is similar across multiple instruments.

Microsoft COM (Component Object Model) — The concept of software
components is analogous to that of hardware components: as long as
components present the same interface and perform the same functions, they
are interchangeable. Software components are the natural extension of DLLs.
Microsoft developed the COM standard to allow software manufacturers to
create new software components that can be used with an existing application
program, without requiring that the application be rebuilt. It is this capability

http://www.ivifoundation.org/

Glossary

that allows T&M instruments and their COM-based IVI-Component drivers to
be interchanged.

.NET Framework — The .NET Framework is an object-oriented API that
simplifies application development in a Windows environment. The .NET
Framework has two main components: the common language runtime and the
.NET Framework class library.

VISA (Virtual Instrument Software Architecture) — The VISA standard was
created by the VXIplug&play Foundation. Drivers that conform to the
VXIplug&play standards always perform I/O through the VISA library. Therefore
if you are using Plug and Play drivers, you will need the VISA I/O library. The
VISA standard was intended to provide a common set of function calls that are
similar across physical interfaces. In practice, VISA libraries tend to be specific
to the vendor's interface.

VISA-COM — The VISA-COM library is a COM interface for I/O that was
developed as a companion to the VISA specification. VISA-COM I/O provides
the services of VISA in a COM-based API. VISA-COM includes some higher-
level services that are not available in VISA, but in terms of low-level I/O
communication capabilities, VISA-COM is a subset of VISA. Agilent VISA-COM
is used by its IVI-Component drivers and requires that Agilent VISA also be
installed.

52 M9420A Programming Guide

This information is subject to change
without notice.
© Keysight Technologies 2015
Edition 1, September 2015

M9420-90031
www.keysight.com

http://www.keysight.com/

	Title Page
	Contents
	What You Will Learn in This Programmer's Guide
	Related Websites
	Related Documentation
	Overall Process Flow

	Installing Hardware, Software, and Licenses
	APIs for the M9420A VXT Vector Transceiver
	IVI Compliant or IVI Class Compliant
	IVI Driver Types
	IVI Driver Hierarchy
	Instrument-Specific Hierarchies for M9420A
	When Using Visual Studio

	Naming Conventions Used to Program IVI Drivers
	General IVI Naming Conventions
	IVI-COM Naming Conventions

	Creating a Project with IVI-COM Using C-Sharp
	Step 1 - Create a Console Application
	Step 2 - Add References
	Step 3 - Add Using Statements
	To Access the IVI Drivers Without Specifying or Typing The Full Path

	Step 4 - Create Instances of the IVI-COM Drivers
	To Create Driver Instances

	Step 5 - Initialize the Driver Instances
	Resource Names
	Initialize() Parameters
	Initialize() Options

	Step 6 - Write the Program
	Step 7 - Close the Driver
	Step 8 - Building and Running a Complete Program Using Visual C-Sharp
	Example Program 1- Code Structure
	Example Program 1- How to Print Driver Properties, Check for Errors, and Clos...

	Working with PA_FEM Measurements
	Test Challenges Faced by Power Amplifier Testing
	Performing a Channel Power Measurement, Using Immediate Trigger
	Example Program 2 - Code Structure
	Example Program 2 - Pseudo-code
	Example Program 2 - Channel Power Measurement Using Immediate Trigger

	Performing a WCDMA Power Servo and ACPR Measurement
	Example Program 3 - Code Structure
	Example Program 3 - Pseudo-code
	Example Program 3 - WCDMA Power Servo and ACPR Measurement

	References
	Glossary

